Regression is a statistical approach used for predicting real values like age, weight, salary, for example. In regression, we have a dependent variable which we want to predict using some independent variables. The goal of regression […]

Continue readingMore Tag# Category: linear regression

## Assumptions Made by Ordinary Least Squares(OLS)

Introduction: Ordinary Least Squares(OLS) is a commonly used technique for linear regression analysis. OLS makes certain assumptions about the data like linearity, no multicollinearity, no autocorrelation, homoscedasticity, normal distribution of errors. Violating these assumptions may reduce […]

Continue readingMore Tag## Linear Regression Using Statsmodels

Introduction: In this tutorial, we’ll discuss how to build a linear regression model using statsmodels. Statsmodels is a Python module that provides classes and functions for the estimation of many different statistical models, as well as […]

Continue readingMore Tag## Introduction To Linear Regression(Part-2)

In the previous part of the Introduction to Linear Regression, we discussed simple linear regression. Simple linear regression is a basic model with just two variables an independent variable x, and a dependent variable y based […]

Continue readingMore Tag## Introduction to Linear Regression

Before we venture into linear regression, let’s first try to understand what regression analysis is? What is Regression? Regression is a statistical approach used for predicting real values like the age, weight, salary, for example. In […]

Continue readingMore Tag