In this article, we’ll discuss Pandas, which is the most popular python data analysis library. Data analysis is a process of cleaning, exploring, organizing, describing, and visualizing data. Pandas is mainly used for cleaning and exploring […]

Continue readingMore Tag# Author: Niranjan B Subramanian

## Box and Whiskers Plot

Box plot, also known as box-and-whisker plot, helps us to study the distribution of the data and to spot the outliers effectively. It is a very convenient way to visualize the spread and skew of the […]

Continue readingMore Tag## Introduction to Support Vector Machine(SVM)

INTRODUCTION: Support Vector Machine(SVM) is the most popular and powerful supervised machine learning algorithm which is used for both classification and regression. However, it is more popular and extensively used in addressing the classification problems of […]

Continue readingMore Tag## Hierarchical Clustering

Hierarchical clustering is the second most popular technique for clustering after K-means. Remember, in K-means; we need to define the number of clusters beforehand. However, in hierarchical clustering, we don’t have to specify the number of […]

Continue readingMore Tag## Types of PCA

In the era of big data, massive datasets are increasingly common in many disciplines and are often difficult to interpret. In this article, we’ll discuss the principal component analysis which is widely used as a dimensionaity […]

Continue readingMore Tag## Types of Sampling

Since it is not always possible to study the entire population, we need to rely on sampling to acquire a segment of the population to perform an experiment. It is also essential to make sure that […]

Continue readingMore Tag## Introduction To Linear Regression(Part-2)

In the previous part of the Introduction to Linear Regression, we discussed simple linear regression. Simple linear regression is a basic model with just two variables an independent variable x, and a dependent variable y based […]

Continue readingMore Tag## Optimal k in K-means

A major challenge in the K-means algorithm is choosing the optimal value of k; however, selecting the right value of k is quite tricky and is also crucial as it can impact the performance of the […]

Continue readingMore Tag## Introduction to K-means

K-means clustering is one of the simplest unsupervised learning algorithms that solve the well known clustering problem. Before we venture into K-means, let’s first understand what clustering is? What is clustering? The idea behind clustering is […]

Continue readingMore Tag## Regression Evaluation Metrics

Once we build our regression model, how can we measure the goodness of fit? We have various regression evaluation metrics to measure how well our model fits the data. In this article, we will see some […]

Continue readingMore Tag